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Low-energy scattering of non-Abelian magnetic monopoles

By Sir MicHAEL ATivaH, F.R.S., Anp N. J. HiTCcHIN
Mathematical Institute, University of Oxford, 24—29 St Giles, Oxford OX1 3LB

The Bogomolny equations represent static configurations of magnetic monopoles, for
some non-Abelian group such as SU(2). Geodesic motion on this configuration space
represents slowly moving interacting monopoles. Geometric information on this space
can then be used to investigate the scattering of monopoles. The results show
surprising features, including a 90° scattering and the conversion of angular
momentum into electric charge.
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1. INTRODUCTION

We begin by recalling the essential features of solitons. They are solutions of some nonlinear
partial differential equations which are localized in space and preserve their identity under
‘interaction’. Infact, essentially all the equations having soliton solutions arise as approximations
of some more basic equation. The solitons are therefore interesting because they are approximate
solutions to the more realistic equation. Finally we note that solitons have mainly arisen in
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situations of one space variable as in the K.d.V. equation (water in a channel) or in the
nonlinear Schrédinger equation (pulses in optic fibres).

Here we shall describe a three-dimensional situation in which solitons arise. Physically the
solitons represent ‘magnetic monopoles’ in the approximation when all velocities are small.
We shall describe the interaction or scattering of these monopoles. As we shall show, this
scattering exhibits surprising and interesting geometrical features that have no counterpart in
one dimension.

The problem of monopole scattering in the form we present here was proposed by Manton
(1982). Manton outlined the general way one should proceed, but at that time not enough
was known to enable the project to be done. In the past two years, however, there has been

significant progress in our understanding of the fundamental equations and this can now be
exploited to solve the problem in considerable detail.

p
[\ \

Before we introduce monopoles it may be helpful to make some very general and elementary
remarks about dynamics. Suppose we have a classical mechanical system with a total energy
& made up as usual of a kinetic part and a potential part. Then positions of stable equilibrium
are given by minimizing the potential energy. These equilibrium positions can depend on
continuous parameters and so will form some submanifold M of the total configuration space
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C. If the energy & is close to this minimum value of the potential energy then the dynamical
flow of the system will stay close to M and will approximately be given by free flow on M.
In geometric terms M will have a Riemannian metric (coming from the kinetic energy) and
‘free’ flow means geodesic flow for this metric.

The same principle applies (at least formally) for the dynamics of fields. Thus a nonlinear
wave equation for a function f{(x, ¢), with x € R, can be viewed as a flow on an infinite-dimensional
configuration space C. Typically, minimizing the potential energy in this framework will involve
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460 SIR MICHAEL ATIYAH AND N. J.HITCHIN

an elliptic variational problem which, with appropriate boundary conditions, will lead to a
[finite-dimensional manifold M of solutions. Thus solutions of the nonlinear wave equation with
energy close to the minimum should be approximated by the geodesic flow on M. There are,
of course, analytical problems in this situation, due to the infinite-dimensionality of C, and these
have to be investigated before rigorous statements about the approximation can be made.
Following Manton (1982) we shall disregard these difficulties and concentrate simply on
understanding the geodesic flow on M.

2. MAGNETIC MONOPOLES

We turn now to a brief review of gauge theories and of the associated classical equations.
The main idea in present theories of fundamental physics is that the electromagnetic force is
only one component of a more complicated entity, which also involves the nuclear forces. The
appropriate equations in this more complicated framework are essentially matrix generalizations
of the Maxwell equations.

The starting point of such a theory is a compact Lie group G, called the gauge group. We
shall concentrate on the simplest non-Abelian case when G = SU (2) so that its Lie aglebra L(G)
consists of 2 X 2 complex matrices 7 with 7% = — T and trace 7' = 0. We use the natural norm
on L(C) | T|> = —% trace T2

The basic fields are now the gauge potential 4,,(x, ¢) and the Higgs field ¢(x, t). Both of these
are functions of x€ R® and time ¢, and take their values in L(G). The index g takes the four
values, 0, 1, 2, 3 corresponding to the time and space coordinates respectively. The covariant
derivative D, is defined, acting on ¢, by

D, ¢ =0,¢+[4, 4],
where 0, 1= ?{axﬂ (and x, = t). The gauge field F,, is defined as the commutator [D,,D,], or
more explicitly _
Elw - a,uAv_avA/t'i_ [A,ua Av]
In analogy with the usual electromagnetic field one can then define the magnetic and electric
ts of F by:
patis o Y magnetic H, = —Fy,, etc.; electric E, = —F, etc.
The total energy & of such a Yang—Mills—Higgs field is the sum of a kinetic energy
1
3| (SIEE+IDgE s
and a potential energy R
1
3| EiapeSiDg e an
R® i i
where the spatial index ¢ takes the values, 1, 2, 3.

The corresponding equations of motion (evolution equations) are called the Yang-Mills—Higgs
equations. Actually, in the usual model there is an additional term A(| ¢ [*— C?)? in the potential
energy and we have taken the Prasad—Sommerfield limit in which A = 0. This can be viewed
as an approximation, for small A, to the more physical model.

If we look for solutions of finite energy & one can show that | ¢| tends to a constant value
C at infinity. If C # 0 we can, by rescaling, take C = 1. Now consider the map

b: 5282
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SCATTERING OF NON-ABELIAN MONOPOLES 461

given by restricting ¢ to a sphere of large radius p in R3: its values lie (approximately) on the
unit sphere in L(G). Clearly we get a well-defined degree £, which is a topological invariant.
This is the magnetic charge and it determines a lower bound for the potential energy: one
shows that potential energy > 4mk.
Moreover equality is attained if and only if the Bogomolny equations

Di¢ = Hi

are satisfied. Solutions of these equations describe static magnetic monopoles.

The Bogomolny equationsareindeed elliptic provided we work modulo gauge transformations.
Recall that if g(x) is a function on R® with values in the group SU(2) it defines a gauge
transformation of 4, and ¢ by the formulae

A,~g'4,8+g710,8, ¢—>g'¢g.

Physically (or geometrically) the true configuration space C is the space of fields 4,,, $ modulo
gauge transformations. Thus we expect the manifold M, cC representing solutions of the
Bogomolny equations with magnetic charge £ to be finite-dimensional. Moreover, M, will have
a natural Riemannian metric arising from the kinetic energy.

As explained in § 1 one now argues that geodesic flow on M, gives the approximate evolution of the
Yang—Mills—Higgs equations for & close to 4nk. This is Manton’s (1982) observation. To make use
of it we now have to solve the following problems:

(1) find the manifold M,;

(2) find the metric on M;;

(3) find the geodesics on M,;

(4) for each point me M, find the associated solution of the Bogomolny equations;
(5) use (3) and (4) to describe the evolution of the solutions.

In the next sections we shall describe at least partial solutions to all these problems. For the
moment we would just like to point out the difference between (1) and (4). This is best
illustrated by considering the situation for a linear elliptic problem. There the analogue of M,
is a finite-dimensional linear space and (1) is only a question of finding the dimension of this
space, whereas the analogue of (4) would involve exhibiting a basis of explicit solutions. In
the present nonlinear case M, is itself nonlinear and (1) involves identifying M, as a manifold,
not just finding its dimension, but (4) requires us to get the explicit solutions as functions on R3.

3. MONOPOLE SCATTERING

The basic monopole occurs when £ = 1. In this case there is an explicit solution due to Prasad
& Sommerfield (1975), which is spherically symmetric about a given origin (it is referred to
as the B.P.S. monopole, where B stands for Bogomolny). Moreover the energy density has a
maximum at the origin so that this may be reasonably viewed as the ‘location’ of the monopole,
regarded as some kind of particle. The Higgs field vanishes only at the origin so that elsewhere
it defines a one-dimensional subspace of the Lie algebra of SU(2). The projection of F,, on this
subspace can be interpreted as an ordinary electromagnetic field and asymptotically the B.P.S.
monopole then looks like a Dirac monopole. However, near the origin the two types of monopole
are different. The Dirac monopole has a point singularity whereas the B.P.S. monopole is
everywhere regular: it is our soliton.

30 Vol. 315. A
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462 SIR MICHAEL ATIYAH AND N.J.HITCHIN

In addition to its location a B.P.S. monopole has a ‘phase’ angle and, although this can be
removed by a gauge transformation, it is best not to do this so that the manifold A, is then

M, = R¥*x$,

where §' is the circle parametrizing the phase. Moreover the natural metric on M, coincides
(up to a scale factor) with the standard metric on R3 x S.

If our monopole now starts to move then motion in R® gives rise to linear and angular
momentum while motion in $%, i.e. phase change, is interpreted as electric charge. Such a
‘particle’ with both magnetic and electric charge is called a dyon.

For £ > 1 the manifolds M, have been extensively studied, culminating in the work of
Donaldson (1984). In particular, one knows that M, is non-singular and has dimension 4%.
Moreover, asymptotically M, is a product of £ (unordered) copies of M,. For a point me M,
in this asymptotic region the corresponding solution of the Bogomolny equations looks
approximately like a superposition of £ B.P.S. monopoles: this is a £-soliton.

Let us now consider the dynamics of slowly moving monopoles as proposed by Manton.
Suppose we start with a point m e M, in the asymptotic region and that we give it a small initial
velocity v. Back in space this means that our collection of £ far-separated B.P.S. monopoles have
been given initial velocities ; and electric charges ¢;. Following the evolution of this system
of monopoles corresponds, by Manton’s argument, to following the geodesic on M, starting
at m in the direction of v.

Since M, is asymptotically a product of copies of M, and since the natural metric on M,
is flat it follows that M, is asymptotically flat. Thus geodesics are asymptotically straight lines,
whereas in the interior of M, we expect curvature corresponding to the interaction of the
monopoles. Instead, therefore, of attempting to follow the geodesic flow in detail we can simply
ask for its scattering behaviour. This means that given (m, v) as an initial ‘in-state’ we ask for
the ‘out-state’ (m’,v’) describing the straight line on A, to which the geodesic is asymptotic
as t—>+ 00. In space this means that we want the asymptotic trajectories and electric charges
of the £ monopoles when they have emerged from their ‘collisions’. This will give the scattering
of the monopoles (i.e. of the solitons).

In the remainder of the section we shall describe the results of the scattering of two monopoles
for various initial data. In the next section we shall indicate the basis on which these results
are derived. We shall restrict ourselves to the case when the initial monopoles are pure
monopoles with no electric charge. Moreover we shall fix our origin at the centre of mass of
the two monopoles.

We begin with the simplest case of a linear collision. This means that the initial motion of
the two monopoles is directed towards the origin. The result in this case is that the monopoles
scatter at 90° to their original motion, as indicated in the diagram:

lin
out< * —out.
Tin
This result is quite surprising since one might have expected the monopoles simply to stay on
the same straight line (bouncing back or passing through). Moreover the scattering takes place
in a certain plane, breaking the apparent symmetry of the situation, and it is not clear what
determines this choice of plane.
The explanation of this surprising behaviour lies in the fact that our monopoles are not just
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SCATTERING OF NON-ABELIAN MONOPOLES 463

‘point-particles’, even asymptotically : they also have an internal structure represented by their
phases. Thus the plane of the scattering has to be determined by the initial relative phases of
the two monopoles. This in turn shows that the internal phase variables are linked to the
ordinary space variables. This linkage is produced by the interaction since, for a single
monopole, the phase and space variables are quite independent.

As we shall see later, the relative phase produces initially only exponentially small dynamic
effects, which would be experimentally negligible. The result of the scattering, involving a
symmetry-breaking, would therefore appear as a random effect. Nevertheless the process is
entirely deterministic. The point is that however far apart the two monopoles are initially they
cannot be regarded as independent particles: their phases are linked in a way that determines
the outcome of the collision.

We move on now to consider a planar interaction, obtained by displacing the initial motions
in the plane of the scattering just described. We shall refer to this as type I scattering, and it is
illustrated in figure 1. To simplify the picture we have indicated only the motion of one of the
two monopoles: the motion of the other is obtained by symmetry.

centre \

Ficure 1. Type I scattering.

The distance apart, g, of the initial directions of motion is the angular momentum of the
monopoles and is conserved. The deflection or scattering angle § is a function of u, which
increases steadily from 0° to 90° as u decreases from oo to 0. The effective forces are therefore
‘repulsive’. For monopole trajectories, which are far apart (ux large), the forces and the
deflection are small, while g = 0 corresponding to linear collision gives the maximum 90°
scattering described earlier.

Perhaps we should emphasize that the broken lines in the diagram are merely meant to
correlate the various in—out states for the various values of 4. Far out they do in fact indicate
approximate trajectories of the monopoles, but in the interaction region the monopoles lose
their particle-like identity and so the trajectories should not be taken seriously. In particular
the diagram appears to suggest that monopoles ‘turn left’ as they approach. However, this is
misleading, as one sees by letting 4 become negative. A more accurate description of the direct
collision (# = 0) is that one half of each monopole turns left while the other half turns right.
This is borne out by the fact that, at the moment of collision (explained in the next section),
the energy density is concentrated in a ring around the origin. If one considers the region of
maximal energy density as representing the physical particle then the various stages of the direct
collision process can be represented schematically by figure 2.

[ 129 ]
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464 SIR MICHAEL ATIYAH AND N.J.HITCHIN

Ficure 2. Schematic diagram of the direct collision process.

We next describe type II planar interactions, in which the initial motions are this time
displaced perpendicularly to the scattering plane of the linear collision. Figures 3 and 4 indicate
the scattering as a function of the initial angular momentum . Note finally that figure 4 is
three-dimensional.
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Ficure 3. Planar diagram of the scattering for x4 > 1.

Y

Ficure 4. Three-dimensional diagram of the scattering for p<1.

For large u the deflection is small and repulsive, but as # decreases the deflection turns round
and becomes attractive. The attractive deflection angle S(u) increases without bound as u
decreases to the critical value 1. For y < 1 the monopoles leave the plane along the perpendicular
line through the origin. Their orbital angular momentum is therefore destroyed but, in
compensation, they now acquire equal and opposite electric charges. Thus they emerge from the
collision as dyons. This possibility was envisaged by Manton (1982) and it emphasizes once again
the linkage between spatial and internal phase variables.

As P. Goddard has pointed out to us, although orbital angular momentum is lost, total angular
momentum is still conserved provided one takes into account the angular momentum of the
electromagnetic field (cf. Goddard & Olive (1978), §2.2). The type II collision process, by
producing dyons, has converted orbital angular momentum into field angular momentum.

The fact that 4 = 1 is the critical value arises from our normalization of | ¢ | at c0. Effectively
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this means that we have normalized the value of the magnetic charge, and this becomes
apparent when one computes the angular momentum of the electromagnetic field as indicated
above.

For values of u slightly larger than 1, one can describe the interaction by saying that the
monopoles, after collision, leave the plane for a time (of the order of (x— 1)7%), but they then
fall back into the plane and separate.

4. THE GEOMETRY OF M

We shall now explain how the scattering results in the previous section are obtained. First
of all, by discarding translations and an overall phase factor we can reduce the manifold M,
(of dimension 8) to a manifold M (of dimension 4). Asymptotically the four parameters of
M represent the relative locations of the two monopoles and their relative phase.

The geometry of M has been studied in detail by Hurtubise (1983) and the more general
case of M has been treated by Donaldson (1984). From these we can give several descriptions
of MY, of which the simplest is perhaps the following. A point m of M} is represented
parametrically by a pair of (unoriented) vectors +x and *y in R? subject to the conditions:

xy=0, p*=1.

Thus y is a unit vector perpendicular to x and changing the sign of y or that of x, or both,
gives the same point m of M.

The points + x are related to the spectral lines of the monopole introduced by Hitchin (1982).
In fact the two spectral lines parallel to y intersect the plane -z = 0 in the two points z = *x.
For | x| o0 the points +x give the locations of the two monopoles and y gives their relative
phase. Note that this exhibits the geometrical linkage between the phase variables and the space
variables referred to earlier. For x = 0, the vector y has any direction and the 2-monopole is
axially symmetric with axis y. Moreover the two zeros of the Higgs field now coincide at the
origin. We shall therefore refer to these 2-monopoles as the ‘collision states’. They give rise
to a copy of the projective plane P, in M. Topologically we can retract MY onto F, (by just
shrinking x to 0) so that A§ is not simply connected: its fundamental group is of order 2.

If x # 0 the 2-monopole parametrized by (+x, +) has only a finite number of symmetries
given by reflection in the three axes x, y and & A . Suppose now we fix a direction through
the origin, call it the z-axis, and consider reflection in this axis. This induces an isometry on
M whose fixed-point set consists of two totally geodesic surfaces. One surface (type I) consists
of pairs (+x, +y) with +y = z, while the other (type II) consists of pairs with y-z = 0. A
type I surface intersects F, in just one point and is topologically a plane, while a type II surface
intersects P, in a P, (i.e. a circle) and is topologically a punctured plane. Both types are surfaces
of revolution and so geodesics on them are easily described (once the metric is known). This
leads to the type I and type II scattering diagrams described in the previous section.

A type I surface, with y fixed, is parametrized by the pair +x in the orthogonal plane.
Viewing x as a complex variable in this plane and putting £ = x® we get a natural complex
parameter for the type I surface on M. Fixing the argument of £ gives a geodesic through the
origin and motion along this geodesic clearly converts the pair +x (at + o0) to +ix (at —o0).
This explains the 90° scattering of a direct collision.

To understand the geometry of type II surfaces it is helpful to consider figure 5. The line
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]

Figure 5. The geometry of type II surfaces.

with arrows indicates the geodesic of a direct collision. The large circles correspond to a rotation
in R3, while the small circles are phase circles. Each of the two surfaces is of type II and is
funnel-shaped, approaching a cone at the large end and a cylinder at the small end. A geodesic
on such a surface, starting at the cone end, will fall through the cylindrical hole if its angular
momentum is small but will fall and then rise again if its angular momentum is large. This
explains the complicated behaviour of the type II scattering.

5. THE METRIC ON M}

The geometry of MY as explained in the previous section gives qualitative results on the
monopole scattering, but quantitative results depend on further knowledge concerning the
Riemannian metric. We shall now explain how one finds the explicit metric, which turns out
to have remarkable features and to be of interest in its own right.

The key observation is that, for quite general reasons, all the manifolds A}, and M$, are
Hamiltonian (or hyper-Kahler). This means that their holonomy group reduces from SO (4n)
to the symplectic group Sp(n), where n = k or k£ — 1 respectively. Alternatively it is equivalent
to say that there are three covariant constant tensors I, J, K acting on the tangent space and
satisfying the quaternion algebra identities

IP=7r2=K2=—1, IJ=—-—JI=K, etc.

Each of I, J, K (and any combination al+ b7+ cK with a2+ 5%+ ¢* = 1) gives a complex Kahler
structure. The standard example is, of course, the Euclidean 4-space R* or alternatively R® x §,
i.e. the manifold M, parametrizing 1-monopoles. The I, J, K of R*x §' in turn induce
corresponding covariant constant tensors acting on all the M, and M. The associated complex
structures occur explicitly in the approach of Donaldson (1984) and can be understood in a
general framework developed by Hitchin ef al. (1985).

In dimension 4 a Hamiltonian manifold is just a self-dual Einstein manifold. Thus our
manifold MY is a self-dual Einstein manifold admitting SO(3) as a symmetry group: this is what
remains of the Euclidean symmetries of R® once we have eliminated translations. Note that
SO(3) does not preserve the complex structures. Moreover, as we saw in the last section, SO (3)
acts with only finite isotropy groups (of order 4) in general. The only exceptional orbit is the
P, representing collision states where the isotropy group is a circle. Thus the self-dual Einstein
equations can be reduced to a system of ordinary differential equations. This was in fact done
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by Gibbons & Pope (1979) and the result is the following. One first puts the metric in the
form ds® = (abe)? dy®+ a202 + b20 3+ 20, (5.1)
where o,, 0,, 0; are a standard orthonormal base for the Lie algebra of SO(3). Here a, b, ¢
are functions of the independent variable 5 and they satisfy the system of first-order differential
equations

2da

= — — 2 _ 42
2 dy (b—c)2—a?, etc., (5.2)

where etc. means we permute a, b, ¢ cyclically.

It turns out that there are essentially only two solutions of these differential equations which
yield complete non-singular 4-manifolds. One solution, known for a long time, is the Taub-NUT
solution, for which two of @, b, ¢ are equal, say a = b. Then a, b, ¢ are all positive and ¢— constant
at 00 while a— 0 at the unique degenerate SO(3)-orbit. The fact that ¢ =& means that, besides
the SO(3)-symmetry, there is an additional U(1)-symmetry.

The second solution is the one that gives the metric on M?$. For this solution a, b, ¢ are all
unequal and one, say ¢, is negative. At oo the difference a—b is exponentially small and the
metric looks asymptotically like the Taub—NUT solution, except that the parameter associated
with ¢ has the opposite sign. The degenerate orbit, i.e. P,, corresponds to a = 0.

It turns out that (5.2) can, in a sense, be linearized. More precisely, consider the linear
differential equation for a function u(6):

u” +%u cosec?d = 0. (5.3)
For any solution #(6) of (5.3) define #(8) by

dy/d6 = u2. (5.4)
Finally, define g, b, ¢ as functions of 6, and hence implicitly of 3, by the three equations
bc = —uw’ —u® cosec 0,
ca = —uu’ +3u® cot 0, (5.5)
ab = —uu’ +%u® cosec .

One can then verify by direct substitution that a, b, ¢ satisfy the original equation (5.2). Since
(5.3) has two independent solutions while (5.4) yields a further constant of integration we see
that we have a 3-parameter family of solutions of (5.2). This procedure should therefore give
the general solution. Now we pick a distinguished solution to give our metric on M} by taking
for u the solution of (5.3), which satisfies

u(@) ~ 0% as 6-0. (5.6)
This is unique up to a multiplicative constant and an explicit solution is given by
u(@) = (2sin6)}K(sinf) 0<6<m, (5.7)

where K(k) is the complete elliptic integral

_ n/2 d¢
K(k) = fo (et (5.8)

If 6 = 0 one gets the degenerate orbit F,, while 6 >m gives the asymptotic region on MJ.
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Using these explicit formulae one deduces, for example, that a type I surface has positive
curvature and this leads to the monotonic behaviour of the scattering angle S(u). On the other
hand a type II surface has positive curvature at oo but then, at a certain critical distance, the
curvature changes sign and then remains negative. This explains the type II scattering, where
an initial repulsion changes eventually into an attraction.

It should perhaps be pointed out that the Taub—INUT solution arises from a ‘special’ solution
of (5.2) : it cannot be obtained from the general 3-parameter family of solutions described above.
Presumably it is a limiting case of this general solution.

6. FURTHER PROBLEMS

While we have described the geodesic flow, and hence the monopole scattering, for some
special surfaces in M the general problem of geodesic flow on M remains to be investigated.
In particular, it would be interesting to see if there are any closed geodesics, since these would
represent ‘bound states’ of monopoles. Probably they do not exist. One might also conjecture
that the geodesic scattering is complete in the sense that every geodesic coming in from ‘infinity’
eventually returns to ‘infinity’. Given our explicit knowledge of the metric, together with its
SO(3)-symmetry these problems should prove tractable.

Another direction for investigation would be the study of M 9 for k> 2. Although
SO(3)-symmetry is no longer sufficient to tie down the metric, other techniques, based on
twistor theory, should permit one to find the metric explicitly. Moreover, the work of Donaldson
(1984) gives a simple parametrization of MY, for all k.
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Discussion

J. T. StuarT, F.R.S. (Department of Mathematics, Imperial College, London, U.K.). Many important
evolution equations come from dissipative systems and then the coefficients, as, for example,
in the relevant cubic Schrodinger equation, are all complex numbers. Thus, we do not have
the beauty of the algebraic and geometric structures underlying integrable systems. Even so,
the following points are worth making in relation to the complex cubic Schrédinger equation:
(i) for some initial conditions and coeflicients, the solution may develop a singularity in a finite
time, as shown by Hocking, Stewartson and Stuart; (ii) a side-band mechanism, analogous
to the Benjamin—Feir instability, is important for stability of, for example, convection cells and
Taylor vortices, and is due to Eckhaus; (iii) the solution may remain bounded, but not periodic
(chaotic?).
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M. TaBor (Department of Applied Physics, Columbia University, New York, U.S.A.). We have seen
that completely integrable systems have both very strong group properties (for example
Kac—Moody algebras) and analytic properties (for example meromorphicity). It would clearly
be of interest to further develop this connection (and if possible determine which property
follows from which!).

Sik MicHAEL ATivau (Mathematical Institute, Unwersity of Oxford, U.K.). In searching for
a common theme or explanation of solitons one might consider, in addition to symmetry, the
notion of duality. This may take different forms. The duality between electricity and magnetism
hasled Dr Olive and his collaborators to suggest that there may be some analogue in the context
of non-Abelian gauge theories. Magnetic monopoles figure prominently in these ideas. There
is also the wave—particle duality in quantum theory and the ‘field—space democracy’ by
A. Schwartz, in which points (of space-time) and fields are put on an equal footing. In view
of the important role of the self-dual Yang—Mills equations, as emphasized in the talk by Dr
Ward, it seems that a deeper understanding of duality in all its aspects might shed light on
the soliton phenomenon.
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